16a+13=17+440

Simple and best practice solution for 16a+13=17+440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16a+13=17+440 equation:


Simplifying
16a + 13 = 17 + 440

Reorder the terms:
13 + 16a = 17 + 440

Combine like terms: 17 + 440 = 457
13 + 16a = 457

Solving
13 + 16a = 457

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add '-13' to each side of the equation.
13 + -13 + 16a = 457 + -13

Combine like terms: 13 + -13 = 0
0 + 16a = 457 + -13
16a = 457 + -13

Combine like terms: 457 + -13 = 444
16a = 444

Divide each side by '16'.
a = 27.75

Simplifying
a = 27.75

See similar equations:

| 16a+13=17+450 | | 16a+13=17+400 | | 16a+13=17+300 | | 16a+13=17+200 | | 16a+13=17 | | x^2-y^2-4x+2y-3=0 | | 16a-13=17-100 | | 3x+19=5x-11 | | 16a-13=17 | | 5y+9=15-140 | | 5y+9=15-145 | | 5y+9=15-150 | | 5y+9=15-80 | | 5y+9=7 | | 6x=17+10y | | 4f-6=24+70 | | 10x+25=x-2 | | 4f-6=24+75 | | 4f-6=24+80 | | 4f-6=24+60 | | 4f-6=24+55 | | (2x+y)(3x^2+2xy+5y^2)= | | 4f-6=24 | | sin(y+30)=3cosy | | 2f-4=20+25 | | 2f-4=20+23 | | 2f-4=20+22 | | 2f-4=20+20 | | 2f-4=20+14 | | 5y=8x+3 | | 2f-4=20+2 | | 2f-4=20-2 |

Equations solver categories