If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16=4(q+1)q=
We move all terms to the left:
16-(4(q+1)q)=0
We calculate terms in parentheses: -(4(q+1)q), so:We get rid of parentheses
4(q+1)q
We multiply parentheses
4q^2+4q
Back to the equation:
-(4q^2+4q)
-4q^2-4q+16=0
a = -4; b = -4; c = +16;
Δ = b2-4ac
Δ = -42-4·(-4)·16
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{17}}{2*-4}=\frac{4-4\sqrt{17}}{-8} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{17}}{2*-4}=\frac{4+4\sqrt{17}}{-8} $
| 3(x+2)-10=4x-6+ | | -4w+36=-2(w-9) | | 9x+10x+11x=180 | | -t^+3t+6=0 | | f(0)=0(18-0) | | 531=(x×6)+21 | | 6+u=-4 | | 8c-4-2c+5=25 | | T^2+3t+6=0 | | x=(65×3)+9 | | −0.5x+1.1=−2.9 | | 9h=117 | | 15+n+3n+2n-3=65 | | 574=f-127 | | 10m+9+5=4m-10 | | 3(m-5)+m=-43 | | 18-10y=23 | | -7s=-5-8s | | 3a+7+2(3+a)=58 | | 5-2(x-3)=7-5x | | f/16=19 | | 2-4c=-3c-1 | | 18.75=3k | | 27=π24x | | -7t-3=9-5t-10 | | 27=q-55 | | u-3.83=2.5 | | 5(y-3)=3(y+4) | | 2x-4+3x+5=180 | | 6=p-43 | | 10x-8x+2+10=22 | | 39+x=54 |