If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16=1/2*4(3b^2)
We move all terms to the left:
16-(1/2*4(3b^2))=0
Domain of the equation: 2*43b^2)!=0We get rid of parentheses
b!=0/1
b!=0
b∈R
-1/2*43b^2+16=0
We multiply all the terms by the denominator
16*2*43b^2-1=0
Wy multiply elements
1376b^2*4-1=0
Wy multiply elements
5504b^2-1=0
a = 5504; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5504·(-1)
Δ = 22016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22016}=\sqrt{256*86}=\sqrt{256}*\sqrt{86}=16\sqrt{86}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{86}}{2*5504}=\frac{0-16\sqrt{86}}{11008} =-\frac{16\sqrt{86}}{11008} =-\frac{\sqrt{86}}{688} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{86}}{2*5504}=\frac{0+16\sqrt{86}}{11008} =\frac{16\sqrt{86}}{11008} =\frac{\sqrt{86}}{688} $
| 19=j/3+15 | | 8b-10=10b+10 | | 6k+2=4K+10 | | 0.20x+15=0.10x+25 | | 13)-2=-4+v/8 | | 7=b3+4 | | 7=b3+ 4 | | -k+1-16k=20-16 | | 2-7y+5y=10-3y | | 1/3(3x−9)=4 | | 97=j+26 | | 13(3x−9)=4 | | r-3=35 | | -4x-6=-2x+8. | | -5(1+2b)=-5(b-15) | | 3q+3=-2q-7 | | 80=4p+4p | | 8n+9=-7n-36 | | 9b-6=5b+8 | | 22=-4+2x | | 10/x+4=20 | | -1=s/8 | | 2x+12=x-24 | | h+15=85 | | -7(5+r)=-63 | | -8=s/8 | | -5z+10+4z=-10+3z | | (1/3(x+5))-(2/3x)=1/(x+5) | | 63+(x+24)=4x | | 10m-3.4=7 | | 5c=55= | | 1/4(-16+x)=-1(-6+x) |