168=1/2(12)b2

Simple and best practice solution for 168=1/2(12)b2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 168=1/2(12)b2 equation:



168=1/2(12)b2
We move all terms to the left:
168-(1/2(12)b2)=0
Domain of the equation: 212b2)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
-(+1/212b2)+168=0
We get rid of parentheses
-1/212b2+168=0
We multiply all the terms by the denominator
168*212b2-1=0
Wy multiply elements
35616b^2-1=0
a = 35616; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·35616·(-1)
Δ = 142464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{142464}=\sqrt{64*2226}=\sqrt{64}*\sqrt{2226}=8\sqrt{2226}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2226}}{2*35616}=\frac{0-8\sqrt{2226}}{71232} =-\frac{8\sqrt{2226}}{71232} =-\frac{\sqrt{2226}}{8904} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2226}}{2*35616}=\frac{0+8\sqrt{2226}}{71232} =\frac{8\sqrt{2226}}{71232} =\frac{\sqrt{2226}}{8904} $

See similar equations:

| 5−2(2w−6)=3w+5 | | 3x+6+5x=12x-4x+5+1 | | 3/4y+6=0 | | 5x-46.5=0 | | 8(3y+3)=3(9y-9) | | 93=j+6 | | 120+0.20x=70+0.70x | | 11x-11=9x-11 | | 3|x-2|=4 | | M-15/5-5m-17/6=3 | | b/5-4=-12 | | 45w+123.95=763.95 | | 6-3x-1=-13 | | 7(4y-2)=42 | | 2|x-8|-3=29 | | 5x+90=3x+20 | | 6/22=72/x | | s-11=81 | | 2+x=157/8x | | 15.14+0.06x=15.71-0.14x | | 4=4+2k+6k | | 8=8v-4(v+ | | 1/5=y+3/5 | | 2x-8-3=29 | | g-32=30 | | 12x-17=15-13 | | 13/w=26/w+6 | | 3x+22x-9=5(5x+8) | | 53=q+26 | | 7(x-2)-3x=5(5x-4) | | 66÷t=6 | | 8-3p=17+6p |

Equations solver categories