If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1600=(20+2x)(40+2x)
We move all terms to the left:
1600-((20+2x)(40+2x))=0
We add all the numbers together, and all the variables
-((2x+20)(2x+40))+1600=0
We multiply parentheses ..
-((+4x^2+80x+40x+800))+1600=0
We calculate terms in parentheses: -((+4x^2+80x+40x+800)), so:We get rid of parentheses
(+4x^2+80x+40x+800)
We get rid of parentheses
4x^2+80x+40x+800
We add all the numbers together, and all the variables
4x^2+120x+800
Back to the equation:
-(4x^2+120x+800)
-4x^2-120x-800+1600=0
We add all the numbers together, and all the variables
-4x^2-120x+800=0
a = -4; b = -120; c = +800;
Δ = b2-4ac
Δ = -1202-4·(-4)·800
Δ = 27200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27200}=\sqrt{1600*17}=\sqrt{1600}*\sqrt{17}=40\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-40\sqrt{17}}{2*-4}=\frac{120-40\sqrt{17}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+40\sqrt{17}}{2*-4}=\frac{120+40\sqrt{17}}{-8} $
| (16-2)180=s | | -10x=9x=12 | | 15=-75=x | | x=2(-50)-10 | | x=45=6x | | 3z=6z-147 | | 5(x+2)-5(x+10)=0 | | p/2-7=83 | | 22.5x=360 | | 4y-13+3y=50 | | Y=2.00+2.50x | | 3x+2=9x+4 | | p/2-6=85 | | -9x-16=x | | -(3x-8)=-28=9x | | 2+x/9=4 | | -y+40=28 | | 2+x/9=14 | | 254.34=3.14*r^2*9 | | 254.34=3.14*r2*9 | | 254.34=3.14*r29 | | x√=9 | | -30=7w+5 | | -2x+14=-2x-12 | | 4x+2x+5x+7=40 | | 5(9x-18)=540 | | 4+2n=39/5 | | 8x+2x=254 | | O.25x=3.25 | | (9k-8)^2=25 | | 2x+1=0x+5 | | -3(2+5x)=6(x+3)-6 |