16-2t=3/2t*9

Simple and best practice solution for 16-2t=3/2t*9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16-2t=3/2t*9 equation:



16-2t=3/2t*9
We move all terms to the left:
16-2t-(3/2t*9)=0
Domain of the equation: 2t*9)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
-2t-(+3/2t*9)+16=0
We get rid of parentheses
-2t-3/2t*9+16=0
We multiply all the terms by the denominator
-2t*2t*9+16*2t*9-3=0
Wy multiply elements
-36t^2*9+288t*9-3=0
Wy multiply elements
-324t^2+2592t-3=0
a = -324; b = 2592; c = -3;
Δ = b2-4ac
Δ = 25922-4·(-324)·(-3)
Δ = 6714576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6714576}=\sqrt{1296*5181}=\sqrt{1296}*\sqrt{5181}=36\sqrt{5181}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2592)-36\sqrt{5181}}{2*-324}=\frac{-2592-36\sqrt{5181}}{-648} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2592)+36\sqrt{5181}}{2*-324}=\frac{-2592+36\sqrt{5181}}{-648} $

See similar equations:

| 2x-6=-5(3+x)-(1-7x) | | b2+5b=0 | | 1.1x1.2x=-10 | | (-1+r=-12 | | 13x-112=38+8x | | 8-x=3x+7-9x | | 1/2(4x-8)=6x+20 | | -31+4p=7(1+6p) | | 2(3x+8)=-21+7 | | -5x-2(-6x-4)=-69 | | 3-4x=12x-1 | | -7x-5=-12-8x | | h-4(h-3)=-3h+12 | | X-11=5x+9 | | -(-3-6x)=-2(1-2x)+7x | | 3x-4(0)=-12 | | 4(x+4)-7=6x-2(-3+x) | | -5(3t-3)+2t=6t-5 | | -2(4s-6)-12=-3(5s+6)-3 | | 1.30x–(x–2.30)(3.10x–5.40)-2.16=4.60–(3.10x–1.20)(x–5.30)–4.30x | | 3x-6(-4x+17)=168 | | 9x-(x+2)=x+19 | | 2(3x+4)=3x-9 | | 4.3-4.5c=3.9c-4.39-1.39 | | 2(h-3)=4h+1 | | 10+3x=44 | | |4y-9|=|9-4y| | | 3(4-2x)=-3(3x-6) | | -20+9x=11x+46 | | M+5x=26 | | -3m+5=-3m-10 | | 6x+-33=-20 |

Equations solver categories