16+(x*x)=81

Simple and best practice solution for 16+(x*x)=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16+(x*x)=81 equation:



16+(x*x)=81
We move all terms to the left:
16+(x*x)-(81)=0
We add all the numbers together, and all the variables
(+x*x)+16-81=0
We add all the numbers together, and all the variables
(+x*x)-65=0
We get rid of parentheses
x*x-65=0
Wy multiply elements
x^2-65=0
a = 1; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·1·(-65)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{65}}{2*1}=\frac{0-2\sqrt{65}}{2} =-\frac{2\sqrt{65}}{2} =-\sqrt{65} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{65}}{2*1}=\frac{0+2\sqrt{65}}{2} =\frac{2\sqrt{65}}{2} =\sqrt{65} $

See similar equations:

| y-135=428 | | 14.83+0.08x=15.33-0.11 | | -112=0.8x | | 33=5(x+8)+3* | | 25-y=17 | | 4(x+5)=9x+25 | | x+316=845 | | -2u-9=-u | | 2/3(10b−15)=4 | | x=6969696-69696969 | | 2(x+5)+3(x-4)=35 | | 12x+10=4x+14+7x+7 | | 11x-2x+56=11x+36 | | 5x-9=2x+9;x= | | 30x=2x+60 | | (9x+4)=68=180 | | 9+6j=5j | | 180=44+2a+(a+10) | | 6-1/3a=-2 | | 36+(x*x)=100 | | 567+x=1823 | | 100+(b*b)=676 | | -10+4n=n-3+2n | | 6(y-5)=60 | | 100+(b*b)=26 | | 4x-88=6x-6 | | -65=x+8 | | 5x-8x+8=2 | | -n+16=1+4n | | 4x30=2x+60 | | -75=x+8 | | -6h-3=4-5h |

Equations solver categories