16(t-4)+5t=7(3t+3)-12

Simple and best practice solution for 16(t-4)+5t=7(3t+3)-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16(t-4)+5t=7(3t+3)-12 equation:


Simplifying
16(t + -4) + 5t = 7(3t + 3) + -12

Reorder the terms:
16(-4 + t) + 5t = 7(3t + 3) + -12
(-4 * 16 + t * 16) + 5t = 7(3t + 3) + -12
(-64 + 16t) + 5t = 7(3t + 3) + -12

Combine like terms: 16t + 5t = 21t
-64 + 21t = 7(3t + 3) + -12

Reorder the terms:
-64 + 21t = 7(3 + 3t) + -12
-64 + 21t = (3 * 7 + 3t * 7) + -12
-64 + 21t = (21 + 21t) + -12

Reorder the terms:
-64 + 21t = 21 + -12 + 21t

Combine like terms: 21 + -12 = 9
-64 + 21t = 9 + 21t

Add '-21t' to each side of the equation.
-64 + 21t + -21t = 9 + 21t + -21t

Combine like terms: 21t + -21t = 0
-64 + 0 = 9 + 21t + -21t
-64 = 9 + 21t + -21t

Combine like terms: 21t + -21t = 0
-64 = 9 + 0
-64 = 9

Solving
-64 = 9

Couldn't find a variable to solve for.

This equation is invalid, the left and right sides are not equal, therefore there is no solution.

See similar equations:

| 2x+4-6x=6-(4x+2) | | -2b+9=25 | | 3x-3-12*6=4x-28 | | y+1.9=6.2-13.7 | | a(a^3+3a^2b+3ab^2+b^3)= | | P(y)=2y^3+3y^2-5(P(-1)) | | 3x-9-12=2x-4 | | 5s-24=4+s | | -3x-8=20 | | -6p=-1126 | | a^3+ab^2= | | 3b^2+6+11b=0 | | 12-0.3u=2 | | x^2-12x+36-16=0 | | a^2(a^2+3a-28)= | | 56x-56-1=56x-168 | | 3x+-8=-29 | | X+-7.5=-2.09 | | 12-1.3u=2 | | 2x-10-6=3x-21 | | x-24=7x | | x*x+3x-4=0 | | y-4=.75y | | x-3-20=0 | | Y=(x-4)(x+1)(3x-5) | | P(y)=2y^3+3y^2-5P(-1) | | x^2-28x+48=0 | | 4x-1=2x+9 | | (0.998001*224+223.552224)y=927 | | 2-5y=2-y | | (x+1)2+6=42 | | P(-1)=2y^3+3y^2-5 |

Equations solver categories