16^2x=1/128

Simple and best practice solution for 16^2x=1/128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16^2x=1/128 equation:



16^2x=1/128
We move all terms to the left:
16^2x-(1/128)=0
We add all the numbers together, and all the variables
16^2x-(+1/128)=0
We get rid of parentheses
16^2x-1/128=0
We multiply all the terms by the denominator
16^2x*128-1=0
Wy multiply elements
2048x^2-1=0
a = 2048; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2048·(-1)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{2}}{2*2048}=\frac{0-64\sqrt{2}}{4096} =-\frac{64\sqrt{2}}{4096} =-\frac{\sqrt{2}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{2}}{2*2048}=\frac{0+64\sqrt{2}}{4096} =\frac{64\sqrt{2}}{4096} =\frac{\sqrt{2}}{64} $

See similar equations:

| 10-4+7f=-10+5f | | -6k+14=6(k-3)-4 | | q+8=-q-10 | | h(-2)=3(-2)⁷-2(-2)⁴+4(-2)+3 | | 5(3-p)=p-3 | | 4x+30+5x+10=110 | | 2x+3=82 | | -8-4j=-8j | | X-0.65x=182 | | h(×)=3×⁷-2×⁴4×+3 | | -1/3m3+13=4 | | (X+2)(x-3)=(x-3)(x+2) | | 4x+8=82 | | h(×)=3×⁷-2×⁴+4×+3 | | -28-3x=-2x-7(x-2) | | 130h=65h | | 130h=130h | | -1x+-2=18 | | -10-5x=-3x-4x | | 3x+8=7+2× | | 5c-2c-8+7-c=3•4+1 | | 2p-10-6p=9+15p | | 5x2-6x=2x-5=0 | | 18/x+4=9/5 | | 15+5x=-1x-9 | | -2(w-7)+10w=-67 | | -22-6=4x+10 | | -2a-7(a-2)=15-8a | | 8t-10-2t=-6t+10+10t | | 3x-15+x=x+21 | | x³=26.18 | | 2+x=15-7x |

Equations solver categories