If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15z^2+22z+8=0
a = 15; b = 22; c = +8;
Δ = b2-4ac
Δ = 222-4·15·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2}{2*15}=\frac{-24}{30} =-4/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2}{2*15}=\frac{-20}{30} =-2/3 $
| X=2/5w | | -1/6=-4/9x | | -1/5=-2x+8/5 | | y=2+3-5 | | y=2+0-5 | | y=2-3-5 | | 8x+3=103 | | y=2-6-5 | | -5=-14x+2 | | -5=-7x+2 | | -5/4=-7/2x+1/2 | | (x-5)•-5=20 | | -x-79=12x | | 4=x/2+5 | | 3n=(56+5)-66+7 | | 2000-5a=-5 | | -5(2x+)+9x=-32 | | -6(v+3)=-36 | | 3u+24=9u | | 1/6f=-6 | | -81=19+9(x-5)^2 | | 1.5-6-3x=9 | | u=9-20 | | 1/100=1/r1=1/r2 | | 64+8v=16v | | x+x(.0725)=1800 | | Y=42x+8 | | 3x+6=-2x-8 | | -4x+3=12x-13 | | -6x-21=51/3x | | 9x+8-4x-5=3x-11 | | −1/5z+3=6z+34 |