If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+23y+4=0.
a = 15; b = 23; c = +4;
Δ = b2-4ac
Δ = 232-4·15·4
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-17}{2*15}=\frac{-40}{30} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+17}{2*15}=\frac{-6}{30} =-1/5 $
| 15(3+h)=15+45 | | K-13=0.2k | | 1x+8=3x-2 | | 2x+18+7=x+17 | | 36x-48+2-x=54x+24 | | 32/70=2/n | | 25y=15y+ | | 2/70=32/n | | 4(x-5)=2x+8 | | (4x-5)=2x+8 | | -2x^2+24x-24=0 | | 6a-9=-2a+7 | | -3+6x=-3+6 | | -3+6x=-3=6 | | -42=-7/4×x | | 6x-8+12-12x=9x+4 | | 4x-13+3x+19=180 | | 6x-8*12-12x=9x+4 | | 6x-5=-21+4x | | 5+54x=1 | | 6c+14=-5c+4+9c6c | | 2x-9=4-7 | | 7x+24=7x-26 | | 11=2+x/5 | | 5x-2=645 | | 7x+24+7x-26=90 | | 8=2m-14 | | 7.25h+5=0.5h+10.25 | | 10.60+25x=35x+20 | | -3(2x-3)+10x=23 | | -x+2=20-7x | | (x+9)=(3x-29) |