If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=192
We move all terms to the left:
15x^2-(192)=0
a = 15; b = 0; c = -192;
Δ = b2-4ac
Δ = 02-4·15·(-192)
Δ = 11520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11520}=\sqrt{2304*5}=\sqrt{2304}*\sqrt{5}=48\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{5}}{2*15}=\frac{0-48\sqrt{5}}{30} =-\frac{48\sqrt{5}}{30} =-\frac{8\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{5}}{2*15}=\frac{0+48\sqrt{5}}{30} =\frac{48\sqrt{5}}{30} =\frac{8\sqrt{5}}{5} $
| x+√3+3x=18-2x | | 5*4x+6=6x+9 | | 12m+6=2m | | 25v-19v=0 | | s4+14=121 | | 2a/3=a/2+7/6 | | x=58x3 | | x=3x58 | | 3=6/n | | -102=-6(3+2a) | | 40x^2+336x+128=0 | | 2/3s-3=-3 | | -5m+(-19m)=14 | | (3x+88)+(x+36)+(2x-10)=180 | | -5=6x+4+7x | | 9x+2=-3+7x+19 | | 1/7=z/3 | | 5x+10=3x~4 | | 13x^2+47x+2=0 | | 3y-5-y=5=5 | | 12x^2+47x+2=0 | | 224=7n+4(6n-6) | | x/0.6=9/1.2 | | X-5/6=6x+1/8 | | 4c-9=11 | | t-2/3=4 | | 8/3(3x+2)+32=16/3 | | 4/5x-18=58 | | 5x-1(12)=7x(2x+2) | | 53y-y^2=196 | | 2x-2=–5 | | (3x+94)+(x+18)+(2x-4)=180 |