If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-44x+21=0
a = 15; b = -44; c = +21;
Δ = b2-4ac
Δ = -442-4·15·21
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-26}{2*15}=\frac{18}{30} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+26}{2*15}=\frac{70}{30} =2+1/3 $
| 113-x=259 | | -49/x-36=-29 | | 11-2(d-1)=2d | | 2(x-3)+4=9+2x | | 7/2x+1/2x=15/2+5/2x | | Z2-6z-307=8 | | x+4/5=5/2 | | 5x/2+125=180 | | -u+23=167 | | 4(x-6)-8x=-20 | | 1/4t+7=3 | | X2-13x-28=0 | | Z^-6z-307=8 | | v+8=-6 | | (m-3)+3m=7m+43 | | P=0.25x | | 1/12a=-3/4 | | 1/3x2/5=11/15 | | 5(3-d=2d+1 | | x+10+x+10=56 | | 9/x+5/x+2=2 | | 10d-6=4d-15/3d | | A(t)=5000 | | 7+z+5=-12 | | 50=1/2h(12+6) | | 16x+21-9x=4x+12-3 | | (x-2)(x+9)=12 | | 3z4−7z2−48=0 | | H=-16t^2+0t+120 | | 9x+2=7-(7x-5) | | 0=4v^2-10v-6 | | 2(3x+6)=2(2x+5) |