If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-20x+1=0
a = 15; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·15·1
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{85}}{2*15}=\frac{20-2\sqrt{85}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{85}}{2*15}=\frac{20+2\sqrt{85}}{30} $
| x^2+15x44=0 | | 8x+5=35−2x | | 3x=1.89 | | -4.6x-(-38.5)=9.4x | | (3x+2)=(5x–30) | | 11=4r+7 | | 4x=6x= | | –(b−2)=1 | | 3u^2–22u–16=0 | | (2x+30)-80=180 | | 169=2x^2+14x+49 | | 3u2–22u–16=0 | | x-3=-34 | | 19=19+u | | X^2+15=9x-5 | | 55+8x=99 | | 2(4x+1)-5=6x+3(2x+3) | | 18-g=5 | | 3(j+9)=3 | | 4x^2-10=-26 | | 180-6c=15c | | (x+9)⋅4=76 | | 2c−8=2(3c−12) | | 30n=15 | | 5-2a=29 | | b−10=b+8+3b | | 2x^2=1083 | | (4x+10)=(8x-25) | | 4x+10)=(8x-25) | | m9=54= | | 560/7=r | | 4p−3=25 |