If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-18x=0
a = 15; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·15·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*15}=\frac{0}{30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*15}=\frac{36}{30} =1+1/5 $
| 2g=9+5g | | 2x2-8x=10 | | 2-3a=5 | | X+113+x+63=180 | | -2(x-5)=-3(x+1) | | 6x+1+41=180 | | (3+x)×2=18 | | -3(3y-4)-y=-2(y-3) | | -2v+13=4-7v+2v | | 3x-5x+3=11 | | 2(6x+1)=10 | | 4x+10=8-3x+6 | | 3x+30+10x-40+6x=180 | | -7+4y=-(4-y) | | (X+16)+(x+24)+x=180 | | -4x+3=-25+3x | | 0.5(2x-1)=-0.1-0.4 | | 2x×2-x=x-5+2x | | 2-7x-2x=3(x-4) | | 290=110+20p | | 9x-3x+3=x-4+7 | | 0c×3=72 | | -17w+13=-18w-2 | | 3m=-m-4 | | 23=3t+4 | | 3x+30+10x-40+3x=180 | | 6-4x=x4 | | 2c-c=2 | | (3x-3/4)-(3x+4/5)=1 | | 4/t+10=12 | | 8h-7=5h-13 | | 5x=6(x-1) |