If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-16x+4=0
a = 15; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·15·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*15}=\frac{12}{30} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*15}=\frac{20}{30} =2/3 $
| 8x+20=-32 | | 2x2-12x+6=0 | | 13=4v-11 | | 25t-87.5=12 | | 4x+7x+12=15+23+29 | | 3*1/8+14=h | | 2m^2+6m+15=0 | | f/7-20=-28 | | g/6+14=24 | | 15(-0.1x+0.3)+1.5x=4.5 | | 3x+2x+7=5-8 | | 180=45-12x+32x-65 | | h=3*1/8+1/4 | | 4+2p=10(3/5p)-2) | | )−3=7(y−79 ) | | 3^(7x-1)=81 | | 3(2x-3)=(5x+7)*(-3) | | y/8-3=7 | | x/4-4=x/9+1 | | 4x-70/2=1 | | 2u=u+11 | | 3x–6/8=21 | | 5(x+8)+7x=3x-2 | | 4+12=7x+2 | | x+5=2*x-7 | | 16x-33=50x+137 | | 4g+3=-3g-11 | | 3x2-10x+9=0 | | 18=u-5 | | 2n+4-3n=7 | | 3.5+0.3x=0.45x−2.5 | | 4(2w-2)-2w=22 |