If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+29x+14=0
a = 15; b = 29; c = +14;
Δ = b2-4ac
Δ = 292-4·15·14
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-1}{2*15}=\frac{-30}{30} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+1}{2*15}=\frac{-28}{30} =-14/15 $
| 11x2+22x+11=0 | | 9x-7=54-42x | | 2x+25=x+2x-10 | | 6(3x+5=39 | | -2x2=-8 | | 4x2=-4 | | 1005x+2=10004x−1 | | 1005x+2=10004x−1. | | 1/2x+1/4=1/6x+1 | | 1/4x+1/2=1/6x+2 | | 1/2x=1/4=1/6x+3 | | 11x+5=87 | | 24.75n+40=163.73 | | u-10=-8+35/u | | w/3=w/5+4 | | 3x+15=9x-18 | | -9x-131=-11 | | -9x-70x+131=11 | | -9x-7(-10x+19)=11 | | 4y=16y-72 | | -10x+19=-9/7x+11/7 | | -10x-10=-7x-4 | | -10x-10=-7x+4 | | -4x-2=-7x+4 | | 15x-20=-80 | | 11y-10y=5 | | (4÷7)y-2=(3÷7)y+(3÷14 | | (4÷7)y-2=(3÷7)y+(3÷14) | | 9x-29=2x-5 | | x=28x+6 | | (7+2x)/4=5 | | 5x-10=3×+2 |