If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+22x=8
We move all terms to the left:
15x^2+22x-(8)=0
a = 15; b = 22; c = -8;
Δ = b2-4ac
Δ = 222-4·15·(-8)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{241}}{2*15}=\frac{-22-2\sqrt{241}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{241}}{2*15}=\frac{-22+2\sqrt{241}}{30} $
| 6x2–1296=0 | | c-413=9 | | 5x-5=12-2x | | -8=1/10z+3/20z | | x+3*3/9-2=7 | | (6*X)+(3*y)=65 | | y=6.2(-4)=-13 | | X+12+2x=-45 | | 2x=(15/x)+7 | | 2x=15/x+7 | | 10z=230 | | 9x−8=1 | | 15+n•6=-42 | | 9=3+x/15.36 | | 8x+4=(2x-5)+7 | | 9+9+9+X/2+9+X/2=y | | q=2√L | | 25xx15=140 | | F(n)=n(n) | | 5x+5x+2+6x-20+6x+3=360 | | 4(z-1=15 | | X(x–25)=–150 | | 1/2x-3=3/2x=x+4 | | x-(x*0.3139)=1471.99 | | 8x2+18x-35=0 | | 10y²-11y-6=0 | | X+11+x+25+2x=180 | | 3/4x+1-10=-1/4x-1/4 | | 7(x−2)–8(4−3x)=47 | | 65+3x=2x–2 | | 6=5x+2(12-x)/x+(12-x) | | 12/q=2.2+2 |