If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x+590=20x+545/x=
We move all terms to the left:
15x+590-(20x+545/x)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
15x-(+20x+545/x)+590=0
We get rid of parentheses
15x-20x-545/x+590=0
We multiply all the terms by the denominator
15x*x-20x*x+590*x-545=0
We add all the numbers together, and all the variables
590x+15x*x-20x*x-545=0
Wy multiply elements
15x^2-20x^2+590x-545=0
We add all the numbers together, and all the variables
-5x^2+590x-545=0
a = -5; b = 590; c = -545;
Δ = b2-4ac
Δ = 5902-4·(-5)·(-545)
Δ = 337200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{337200}=\sqrt{400*843}=\sqrt{400}*\sqrt{843}=20\sqrt{843}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(590)-20\sqrt{843}}{2*-5}=\frac{-590-20\sqrt{843}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(590)+20\sqrt{843}}{2*-5}=\frac{-590+20\sqrt{843}}{-10} $
| w-17=-17 | | 59-v=188 | | (-1+4x)/(5)=3 | | 2x+6x=24+8 | | 5(x+9)-4=71 | | H(x)=x^2+4x+10 | | -7(1-8x)=105* | | (-2x+18)°(-4x+24)°=90 | | 3n+4/2=-16 | | 5(x+9)-4=۷۱ | | 4m+3=15-2 | | 8(u+12)=-8 | | 5/8=6/x+2 | | -6(u-4)=-4u+30 | | 7x+5=-4+3x+17 | | 6(1+2x)+2(2-6x)=7-2x-x | | (79-x)+(90-2x)=180 | | -16x^2+96x+0=0 | | x-(4x+11)=5x+13 | | 12x-6=-4x+26 | | 0x+1=8x+9x | | 2x+35=4x-7 | | 3x+8=-6+4x | | u+3=-13 | | -10+15n=-33+8n | | -2(w-8)=4 | | 2-(3y-2)=5-2y | | 20a-3a-5a-10a=18 | | t/6+8=13 | | -(w-16)=4 | | x/8=49/28 | | 16/6=3D/;9d= |