15x(x+4)=56

Simple and best practice solution for 15x(x+4)=56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x(x+4)=56 equation:


Simplifying
15x(x + 4) = 56

Reorder the terms:
15x(4 + x) = 56
(4 * 15x + x * 15x) = 56
(60x + 15x2) = 56

Solving
60x + 15x2 = 56

Solving for variable 'x'.

Reorder the terms:
-56 + 60x + 15x2 = 56 + -56

Combine like terms: 56 + -56 = 0
-56 + 60x + 15x2 = 0

Begin completing the square.  Divide all terms by
15 the coefficient of the squared term: 

Divide each side by '15'.
-3.733333333 + 4x + x2 = 0

Move the constant term to the right:

Add '3.733333333' to each side of the equation.
-3.733333333 + 4x + 3.733333333 + x2 = 0 + 3.733333333

Reorder the terms:
-3.733333333 + 3.733333333 + 4x + x2 = 0 + 3.733333333

Combine like terms: -3.733333333 + 3.733333333 = 0.000000000
0.000000000 + 4x + x2 = 0 + 3.733333333
4x + x2 = 0 + 3.733333333

Combine like terms: 0 + 3.733333333 = 3.733333333
4x + x2 = 3.733333333

The x term is 4x.  Take half its coefficient (2).
Square it (4) and add it to both sides.

Add '4' to each side of the equation.
4x + 4 + x2 = 3.733333333 + 4

Reorder the terms:
4 + 4x + x2 = 3.733333333 + 4

Combine like terms: 3.733333333 + 4 = 7.733333333
4 + 4x + x2 = 7.733333333

Factor a perfect square on the left side:
(x + 2)(x + 2) = 7.733333333

Calculate the square root of the right side: 2.780887149

Break this problem into two subproblems by setting 
(x + 2) equal to 2.780887149 and -2.780887149.

Subproblem 1

x + 2 = 2.780887149 Simplifying x + 2 = 2.780887149 Reorder the terms: 2 + x = 2.780887149 Solving 2 + x = 2.780887149 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = 2.780887149 + -2 Combine like terms: 2 + -2 = 0 0 + x = 2.780887149 + -2 x = 2.780887149 + -2 Combine like terms: 2.780887149 + -2 = 0.780887149 x = 0.780887149 Simplifying x = 0.780887149

Subproblem 2

x + 2 = -2.780887149 Simplifying x + 2 = -2.780887149 Reorder the terms: 2 + x = -2.780887149 Solving 2 + x = -2.780887149 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = -2.780887149 + -2 Combine like terms: 2 + -2 = 0 0 + x = -2.780887149 + -2 x = -2.780887149 + -2 Combine like terms: -2.780887149 + -2 = -4.780887149 x = -4.780887149 Simplifying x = -4.780887149

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.780887149, -4.780887149}

See similar equations:

| x+4x+x+100=250 | | 42/7+33/4 | | 5n-6=20 | | 6y^2=-6y+336 | | 9.5-.75m= | | 8k-6(3-2k)= | | 2/3(y+57)=178 | | 3v^2+26v+48=0 | | 3m+2(5m-7)= | | ax-3c=2x | | 0.153/1.7 | | 6(t/6) | | 1.7/0.153 | | 6/5x=36 | | -9x^2+7x+9=0 | | 9(r/9) | | (-9/7)(-7/9x) | | -8t-5=-9t-7 | | (-9/7)(-7/9) | | 15-x^2=2x | | 3x^3-16x^2=-5x | | 7e^3x=1 | | (-5/4)(-4/5x) | | a^2-6a+11=92 | | 32x-20y=20 | | y-1=-5/9x | | 5+7e^3x=6 | | -3x^2+7x+4=0 | | 9x-7=y | | x^3-10x^2+25=0 | | x-0.6=8.57 | | f(x)=-2x^2+3x+7 |

Equations solver categories