If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x(2x+10)=120
We move all terms to the left:
15x(2x+10)-(120)=0
We multiply parentheses
30x^2+150x-120=0
a = 30; b = 150; c = -120;
Δ = b2-4ac
Δ = 1502-4·30·(-120)
Δ = 36900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36900}=\sqrt{900*41}=\sqrt{900}*\sqrt{41}=30\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-30\sqrt{41}}{2*30}=\frac{-150-30\sqrt{41}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+30\sqrt{41}}{2*30}=\frac{-150+30\sqrt{41}}{60} $
| x+x+14=36 | | -105y+-18=-98 | | 5/6(x-4/5)=-19/6 | | 14=6x-24 | | 62+2y=-30 | | 2x+12=3x-12+5 | | -27+18v=-56 | | 15q=20q-50 | | 2y×y=50 | | -3y^2-7y+4.25=0 | | 8z+7=-15 | | -30y+-60=-30 | | 7x+4(3x+1)=23 | | 2(2y-4)-y=1 | | 12x+9=12x+18 | | 4(3x+8)=-16+12 | | -3-18u=12 | | -3x=+6 | | 11-1/2x=14 | | 5x-2(3x-7)=21 | | 11+1/2x=14 | | 3(4m+1)-9m=6(2-m) | | 4x=16-26 | | 3/4(-11/18)-y=-4/5 | | x/11=88/121 | | -x-8/5=2 | | 2(p+5)=16 | | -3/8-9/4u=3/2 | | 9-m/4=16 | | 3+2(5x-2)=-5(2x-3)+8x | | -(3/4)x=-44 | | (2/9)x=16 |