If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2+10m=0
a = 15; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·15·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*15}=\frac{-20}{30} =-2/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*15}=\frac{0}{30} =0 $
| -x-13=-13-2x | | 45/30=v/8 | | j/10=9/6 | | 3x+x-7=4x | | 4(1-1x)=-24 | | w-19=2(3-w)+11 | | -2(5+4x)=-2 | | 21-z=-12 | | 10^-6x=4 | | 1-4e=-3 | | 2x=2(20)= | | X/3+2=5x/6-3 | | 7(-1-3x)=-49 | | 4(4y+8)=100 | | 3/4(m-500)=8000+4000 | | 7(3x+2)=245 | | 2+(3h-1)=11+2h | | 5q*5q*5q=8 | | 3.9g+10=1.9g+16 | | (x+25)+(7x-65)=180 | | 13x=260000 | | 100x=260000 | | 200x=260000 | | 8.5=10.39t-4.905t^2 | | 1/3+4x-6x=-35/3 | | -5x+6=6x-60 | | 15=-16t^2+30t+4.5 | | 2(9+7x)=25 | | -3(6x-4)=-60 | | 6(-3x+3)=180 | | 125m-75m+38.800=41.000-150m | | Y=0.76x-2.8 |