If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15b(b=6)
We move all terms to the left:
15b(b-(6))=0
We multiply parentheses
15b^2-90b=0
a = 15; b = -90; c = 0;
Δ = b2-4ac
Δ = -902-4·15·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-90}{2*15}=\frac{0}{30} =0 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+90}{2*15}=\frac{180}{30} =6 $
| 7+u/13=20 | | P+512p=6 | | 32x+10=26 | | x/34+10=11 | | 6n-8=3n | | 10=11-21/u | | 7.5p•3+4=29 | | 95+10x-5+95+8x+13=360 | | 8=2w—2 | | 180=3p+(45+p) | | 1/4=12x-2 | | 2n-27=1 | | 5p+5(p+5)+55=5p+5(p+5)+5p | | 12=-5k+7 | | 165=9n | | (45+p)+3p=180 | | -5(3a+9)=-18-7a | | 180x-8=160x-6 | | 2x–0=–12 | | 0=2s+-8 | | (1+2x)+(x-43)=180 | | 2x-48-108=180 | | 65+3x+9+12x+1=180 | | 2x-48-108=90 | | 2p+11=6-5 | | 180x+8=160x+6 | | 1.5n=-5+2.75n | | x^2+10.5x-84=0 | | (x-13)+(2x+1)=180 | | 2.x+8=15 | | p²+5p-6=0 | | 20+30=x5 |