If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15=v2
We move all terms to the left:
15-(v2)=0
We add all the numbers together, and all the variables
-1v^2+15=0
a = -1; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-1)·15
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-1}=\frac{0-2\sqrt{15}}{-2} =-\frac{2\sqrt{15}}{-2} =-\frac{\sqrt{15}}{-1} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-1}=\frac{0+2\sqrt{15}}{-2} =\frac{2\sqrt{15}}{-2} =\frac{\sqrt{15}}{-1} $
| 3=9-2f | | -18h-12h=12 | | 15-3x=3x-9 | | -16t+14t=-6 | | 18=15v-6v | | -15f-12=-16f | | 760=4v | | -41=x/8 | | 5x+5+25+4x+3+19=180 | | 23=2t | | 6−2z=4 | | 22g=418 | | -4w-1/2=3/2w-6/5 | | -17=-5=3w | | -v/6=-44 | | −2(3x+2)−−2x+4=40 | | 16+7s=11s | | 3mm=10. | | 1/3-1/5w=-1/4 | | 2(x+4)=3(x-5 | | 11=u/3-12 | | 7r+3=21 | | 9x-11)+(4x+1)+(7x-3)=180 | | 3x+4=5x-16,x | | w/2+16=41 | | 1+1m=2 | | -3+4x=52 | | 93+4x=25x+7x | | -v-5v=16 | | x+2x+7=4x-7 | | 53=3u+11 | | 93+3x=25x+7x |