15=-(d-5)(2d+6)

Simple and best practice solution for 15=-(d-5)(2d+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15=-(d-5)(2d+6) equation:



15=-(d-5)(2d+6)
We move all terms to the left:
15-(-(d-5)(2d+6))=0
We multiply parentheses ..
-(-(+2d^2+6d-10d-30))+15=0
We calculate terms in parentheses: -(-(+2d^2+6d-10d-30)), so:
-(+2d^2+6d-10d-30)
We get rid of parentheses
-2d^2-6d+10d+30
We add all the numbers together, and all the variables
-2d^2+4d+30
Back to the equation:
-(-2d^2+4d+30)
We get rid of parentheses
2d^2-4d-30+15=0
We add all the numbers together, and all the variables
2d^2-4d-15=0
a = 2; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·2·(-15)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*2}=\frac{4-2\sqrt{34}}{4} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*2}=\frac{4+2\sqrt{34}}{4} $

See similar equations:

| 5x+5=5-6x | | 7(x+1)-(5x+9)=-14 | | 1/8y-3/4=5/4 | | 18.12=z+10.5 | | 22-5x=-6-12 | | -20-8v=-4(v+5)-6v | | -6/0=x | | -4+x=- | | -2x+5+3x=12-26 | | -7(-3x+5)=175 | | 0.7(3x+6)=3x-4 | | d4=3.66 | | (1+v)(5v+4)=0 | | 3x-2x+5=4 | | 26+y=12 | | 5x+2=9(x+2) | | 6-4(2-(-2))=x | | 7(4v-6)=-18v | | u−3=15.4 | | 1/3y-1=3/2 | | t+1.41=4.41 | | -40-10x=20 | | 5x+1x=8+8x | | -6(1+3x)=-6 | | 5x+1=8+8x | | 2x-15+2x-9=12 | | (2p+3)^2=16 | | 5.77=q=9 | | X+3x+2x=60 | | 1/2(14x+4)-10=-1/3(18x-12) | | 7(1-3x)+3x=55 | | 4y=16.36 |

Equations solver categories