156/8x+10x=1360

Simple and best practice solution for 156/8x+10x=1360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 156/8x+10x=1360 equation:



156/8x+10x=1360
We move all terms to the left:
156/8x+10x-(1360)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
10x+156/8x-1360=0
We multiply all the terms by the denominator
10x*8x-1360*8x+156=0
Wy multiply elements
80x^2-10880x+156=0
a = 80; b = -10880; c = +156;
Δ = b2-4ac
Δ = -108802-4·80·156
Δ = 118324480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{118324480}=\sqrt{256*462205}=\sqrt{256}*\sqrt{462205}=16\sqrt{462205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10880)-16\sqrt{462205}}{2*80}=\frac{10880-16\sqrt{462205}}{160} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10880)+16\sqrt{462205}}{2*80}=\frac{10880+16\sqrt{462205}}{160} $

See similar equations:

|  -6x+3=21 | | 7=1/7q | | 111x+102.22=601.72 | | (x+3)^2=x+1 | | -20+8n=-4n-8 | | 5x-6/7=5 | | 8(x+2)-2=4x+4(3+x) | | 5x-2x(x+5)=18 | | x^2+3x+74=13x | | 21+4y-15y=73 | | 10x-7=(5x=4x+6) | | 14x+15=113 | | 15-14-2x=7 | | -3(-6k-5)=105 | | b–8.3=-18.1 | | 8+3r+15=5 | | 18+2g-11=-4+13g | | 11x+2(10-2x)=-28 | | 1/4K+1/2(k+4)=6 | | (3x+5)(3x-5)=24 | | 56-16=5(x-9) | | 3y-(y+5)=15 | | 5-2x=-65 | | 5x+13=x-98 | | 62+5y-19=17y-13-4y | | 4/9=24/y= | | 2x+17=2x+18=3x+5 | | (4x-112)=(2x-62)+34 | | 500×5/8=x | | 13-13d=-19-9d | | 8x+4=-8+3x+22 | | 22.8-(3+b)=b-9 |

Equations solver categories