If it's not what You are looking for type in the equation solver your own equation and let us solve it.
156-7x*3*5x+x*99x=1/5
We move all terms to the left:
156-7x*3*5x+x*99x-(1/5)=0
We add all the numbers together, and all the variables
-7x*3*5x+x*99x+156-(+1/5)=0
Wy multiply elements
-105x^2*5+99x^2+156-(+1/5)=0
We get rid of parentheses
-105x^2*5+99x^2+156-1/5=0
We multiply all the terms by the denominator
-(105x^2*5)*5+99x^2*5-1+156*5=0
We add all the numbers together, and all the variables
99x^2*5-(105x^2*5)*5+779=0
We multiply parentheses
99x^2*5-2625x^2+779=0
Wy multiply elements
495x^2-2625x^2+779=0
We add all the numbers together, and all the variables
-2130x^2+779=0
a = -2130; b = 0; c = +779;
Δ = b2-4ac
Δ = 02-4·(-2130)·779
Δ = 6637080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6637080}=\sqrt{4*1659270}=\sqrt{4}*\sqrt{1659270}=2\sqrt{1659270}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1659270}}{2*-2130}=\frac{0-2\sqrt{1659270}}{-4260} =-\frac{2\sqrt{1659270}}{-4260} =-\frac{\sqrt{1659270}}{-2130} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1659270}}{2*-2130}=\frac{0+2\sqrt{1659270}}{-4260} =\frac{2\sqrt{1659270}}{-4260} =\frac{\sqrt{1659270}}{-2130} $
| √156-7x*3*5x+x*99x=1/5 | | 48+y+95=180 | | 7x*3*5x+x*99x=1 | | 8*7x=55 | | F(-x)=6x-8 | | 300=(10-7)3x-100 | | x/12=7.7/100 | | 7.7/100=x/12 | | (3x+12)+(2x+3)=90 | | 11x+99=10x+60 | | -4–4(-x-1)=-4(6+2x) | | -2(-7-–8)=-39+3n | | m+23=17 | | 9y+3=6y15 | | -3(n-5(=3(1-3n( | | -3(n-5(=31 | | 24+8x=8(5x+8x(+8x | | X-3/4-1=x-8/3 | | 24+8x=8(5x+x(+8x | | 24+8x=8(5x+x | | -2(-7n-8(=-3+3n | | 7x^2-2x+21=0 | | -1+8z=2+8z | | 8-(2x+1)=8 | | 3/4x-14=20 | | 1/5+y=9/5 | | 8x-2(x-9)=6(x+1)+7 | | -3*4y=(4+5)-72 | | 2x-13=-18+2x | | Y-2(2y+4)=16 | | x^2+3x+38=0 | | 2x=-5+2x |