155=x2/5-10

Simple and best practice solution for 155=x2/5-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 155=x2/5-10 equation:



155=x2/5-10
We move all terms to the left:
155-(x2/5-10)=0
We get rid of parentheses
-x2/5+10+155=0
We multiply all the terms by the denominator
-x2+10*5+155*5=0
We add all the numbers together, and all the variables
-1x^2+825=0
a = -1; b = 0; c = +825;
Δ = b2-4ac
Δ = 02-4·(-1)·825
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{33}}{2*-1}=\frac{0-10\sqrt{33}}{-2} =-\frac{10\sqrt{33}}{-2} =-\frac{5\sqrt{33}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{33}}{2*-1}=\frac{0+10\sqrt{33}}{-2} =\frac{10\sqrt{33}}{-2} =\frac{5\sqrt{33}}{-1} $

See similar equations:

| 5r+9=-3r+25 | | 61=g+57 | | 15=3x+4-9x-7 | | 3x-4=-28+6 | | 30=-w+12 | | -3v=(-48) | | 9a=10a- | | 2x+8+4x-2=10x-10 | | 5(3x-2)+3x=80 | | 9r+7=3r+31 | | g-52=60;g=112 | | 6g=-8+8g | | 12x+1=54 | | 5(x-1)+4(x+2)=75 | | 5.00+0.65x=10.00+0.45x,x | | 93=v+37 | | (x^2)+16=25 | | X+54+51+x+89=180 | | 8+8u=9u | | 2x+8=4x-2=10x-10 | | 20-13t=-12t | | |5k|+2=6 | | 3x-4=–28+6x | | 15+2.5=10+3x | | -10+7t=-3+6t | | –10=w–2 | | 33=q-30 | | 17-17h=-h-2-15h | | 7r+4=3r-16 | | -103=-5+6p-1-6p | | a-19/22=14 | | 9=m/18+10 |

Equations solver categories