1536=(2x+2)(x-8)(4)

Simple and best practice solution for 1536=(2x+2)(x-8)(4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1536=(2x+2)(x-8)(4) equation:



1536=(2x+2)(x-8)(4)
We move all terms to the left:
1536-((2x+2)(x-8)(4))=0
We multiply parentheses ..
-((+2x^2-16x+2x-16)4)+1536=0
We calculate terms in parentheses: -((+2x^2-16x+2x-16)4), so:
(+2x^2-16x+2x-16)4
We multiply parentheses
8x^2-64x+8x-64
We add all the numbers together, and all the variables
8x^2-56x-64
Back to the equation:
-(8x^2-56x-64)
We get rid of parentheses
-8x^2+56x+64+1536=0
We add all the numbers together, and all the variables
-8x^2+56x+1600=0
a = -8; b = 56; c = +1600;
Δ = b2-4ac
Δ = 562-4·(-8)·1600
Δ = 54336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{54336}=\sqrt{64*849}=\sqrt{64}*\sqrt{849}=8\sqrt{849}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{849}}{2*-8}=\frac{-56-8\sqrt{849}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{849}}{2*-8}=\frac{-56+8\sqrt{849}}{-16} $

See similar equations:

| 21y(2y-3)7(9-5y)-6(8-4y)=0 | | 1.3w+2.5=10.3 | | -1/2x=2=x-1 | | 35-4x=8.75 | | x+x/10=90 | | |6x-3|+10=67 | | 7*(x-1)+6=3*(x+1)+2*(2x+3) | | 5x+28=6x+10 | | 2x-4(x-5)=6+4x+8 | | 3v^2-1=-31 | | 34+10n-19n=4n+50+14 | | 3x=17,4 | | 7x-14=28x-84 | | 7v-25=29 | | (5x-6)=(4x+15) | | x-4/15=x/5 | | 9/5m-10/3=2/3 | | x/4=(x-2)/3 | | r−7.3 = 7.7 | | X^2-0.4x-1.2=0 | | 8x16=6x | | x+x+x=294 | | y/4+9=35 | | r+4/10=5 | | 24y+20y=75 | | 3x²-x-10=0 | | 1/7(x+1)=3 | | 3,9h-6,1=7,1 | | 45=1/2b(10) | | 7x+19=4x+10 | | 4x+525=925 | | 2/6+2/3=x/9 |

Equations solver categories