If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150x-4x^2-250=0
a = -4; b = 150; c = -250;
Δ = b2-4ac
Δ = 1502-4·(-4)·(-250)
Δ = 18500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18500}=\sqrt{100*185}=\sqrt{100}*\sqrt{185}=10\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-10\sqrt{185}}{2*-4}=\frac{-150-10\sqrt{185}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+10\sqrt{185}}{2*-4}=\frac{-150+10\sqrt{185}}{-8} $
| X+3y=350 | | (5x-15)(2x+9)=0 | | 3(2x+7)-13=5(2-2x) | | 13-3x=7x-3 | | 4/5m-8=12 | | -6=5,7-z | | y2-37.5y+250=0 | | 9=(3/7)u | | X-0.32x=68 | | 10x-14=24 | | y2-75y+250=0 | | r+55=180 | | d+63.5=90 | | 30-5x=45-25 | | y^2-75/2y+250=0 | | x*0.8x=1280 | | 34-5x=12-7x | | 12x-18=4x+3 | | 8x+2=3x+15 | | 9x+3+44=14x+7 | | -13-9x=13 | | 1-x=-75,7 | | 3x=-8(5x+1 | | 8.6=5/(5-x)^2*(5.5*x) | | 2x+12=x+32 | | 7=(3x-1) | | y-11=17 | | 3x+12x+-30=180 | | 9c-5=2c+9 | | 3x=12x+-30 | | 2*(x+1)-3x=x-3*(x-1) | | 5(5x+3)+3(5x-2)=84 |