150=8x+7/x

Simple and best practice solution for 150=8x+7/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150=8x+7/x equation:



150=8x+7/x
We move all terms to the left:
150-(8x+7/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+8x+7/x)+150=0
We get rid of parentheses
-8x-7/x+150=0
We multiply all the terms by the denominator
-8x*x+150*x-7=0
We add all the numbers together, and all the variables
150x-8x*x-7=0
Wy multiply elements
-8x^2+150x-7=0
a = -8; b = 150; c = -7;
Δ = b2-4ac
Δ = 1502-4·(-8)·(-7)
Δ = 22276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22276}=\sqrt{4*5569}=\sqrt{4}*\sqrt{5569}=2\sqrt{5569}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{5569}}{2*-8}=\frac{-150-2\sqrt{5569}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{5569}}{2*-8}=\frac{-150+2\sqrt{5569}}{-16} $

See similar equations:

| 4x-4=4x+1/2 | | 4x-4=4x+1/4 | | 2+w=-10 | | 16x(12)=112 | | 3x+10x-37=-5x-9 | | 4x-4=4x+37 | | 2y-2(8-y)=0 | | . t÷(-11)=11 | | 3(2r-6)-7=4r-3 | | 2x-6x-16=-10x-18 | | -10=w+2 | | 8+16x+2.75=44.03 | | 2x-6x-16=-10x-17 | | 4c=10.4 | | 4x-12=6x-11 | | 6.8327=2^x | | -15x-8x+11=-3x-16 | | 4x-4=4x+(-10) | | 4x-4=4x+(-14) | | -8x-7=-10x-13 | | 5b=7.5 | | 4x-4=4x+(-2) | | -2(x+4)+2=-8(x+6) | | 6.5p+4.59=-5.16+5.2p | | (6)=-3x+5 | | 4x-4=4x5 | | -5.8-4.9x=7.4+3.9x-6.4x | | x-7=x^2-8x+19 | | –5.8−4.9c=7.4+3.9c−6.4c | | x(5x+3)=4000 | | 4x-4=4x+(-16) | | 4x­-12=6x­-11 |

Equations solver categories