1500=x(100-x)

Simple and best practice solution for 1500=x(100-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1500=x(100-x) equation:



1500=x(100-x)
We move all terms to the left:
1500-(x(100-x))=0
We add all the numbers together, and all the variables
-(x(-1x+100))+1500=0
We calculate terms in parentheses: -(x(-1x+100)), so:
x(-1x+100)
We multiply parentheses
-1x^2+100x
Back to the equation:
-(-1x^2+100x)
We get rid of parentheses
1x^2-100x+1500=0
We add all the numbers together, and all the variables
x^2-100x+1500=0
a = 1; b = -100; c = +1500;
Δ = b2-4ac
Δ = -1002-4·1·1500
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{10}}{2*1}=\frac{100-20\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{10}}{2*1}=\frac{100+20\sqrt{10}}{2} $

See similar equations:

| 3(x-3)-22=7(x-7) | | 6-7q=-9q | | n—5/6+n+3/7=11/21 | | 10+4u=3u | | 1/x-4-4/x+2=6/x^2-2x-8 | | 9(b-5)=-126 | | 6m+3=-93 | | -9(3+n)=-36 | | 1/2(x-3)-1/3=x+5 | | 10(9+x)=220 | | 〖6x〗^2-18x-18=6 | | M=n2+2 | | -7/x=(4/2x)+9 | | 9-(4x-1)=-4x+8 | | 6x-18=9x+19 | | 6-7(4-5v)=153 | | –6+7w=8w | | -4x+3/2=-11 | | 1-3k=5k-7 | | 2x+2=160 | | 4=x4+4 | | 2=∣8p+10∣ | | -14x=13x | | 6y-3=42+3 | | 6x^2=324+2x | | 6x+5/2=9/6x | | (x+10)+(3x+28)=90 | | -7v=-15-6v | | 6y+4=42 | | 20-10y+10y=20 | | -15=-4a+5 | | -170=5(8n+6) |

Equations solver categories