If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1500=(x+140)x
We move all terms to the left:
1500-((x+140)x)=0
We calculate terms in parentheses: -((x+140)x), so:We get rid of parentheses
(x+140)x
We multiply parentheses
x^2+140x
Back to the equation:
-(x^2+140x)
-x^2-140x+1500=0
We add all the numbers together, and all the variables
-1x^2-140x+1500=0
a = -1; b = -140; c = +1500;
Δ = b2-4ac
Δ = -1402-4·(-1)·1500
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-160}{2*-1}=\frac{-20}{-2} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+160}{2*-1}=\frac{300}{-2} =-150 $
| x²+140x=1500 | | 1500=x²+140x | | 6x-70=70-x | | 7+y+9+y=96 | | (16-x)(x)=48 | | —2n+5=—4 | | 21.80=4g+3.88 | | (3+2x)/5=17 | | 3+2x)/5=17 | | 2(y)+1/2(y)+1/4(y)+1=100 | | 2(x+1)-3(3x-7)=40 | | 7a=700-1057 | | 4(k+32(k-1)=4 | | 11+2.5x=26 | | 4(k+3)-2(k-1=4 | | -9x+3,8=9x+20 | | 5(2x+3)+4(3x-2)=90 | | 2(3)^x-1+1=57 | | 99x3+5-8x2=-5x3+3 | | 16.67=3g+3.89 | | -4(r+9)=-46 | | |9x+2|=65 | | |x-8|=28 | | 2(3x-1)+11x=40 | | 6x+2+2x+6-8=0 | | 5x-11=100 | | -6d–2d=96 | | 96=-6d–2d | | 2-3q=8 | | -7=-35+x/3 | | k/3-9=12 | | 0=x²-3x-180 |