If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150000=1/3*p
We move all terms to the left:
150000-(1/3*p)=0
Domain of the equation: 3*p)!=0We add all the numbers together, and all the variables
p!=0/1
p!=0
p∈R
-(+1/3*p)+150000=0
We get rid of parentheses
-1/3*p+150000=0
We multiply all the terms by the denominator
150000*3*p-1=0
Wy multiply elements
450000p*p-1=0
Wy multiply elements
450000p^2-1=0
a = 450000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·450000·(-1)
Δ = 1800000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800000}=\sqrt{360000*5}=\sqrt{360000}*\sqrt{5}=600\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-600\sqrt{5}}{2*450000}=\frac{0-600\sqrt{5}}{900000} =-\frac{600\sqrt{5}}{900000} =-\frac{\sqrt{5}}{1500} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+600\sqrt{5}}{2*450000}=\frac{0+600\sqrt{5}}{900000} =\frac{600\sqrt{5}}{900000} =\frac{\sqrt{5}}{1500} $
| C/12=14/p | | -6-x^2=34 | | X=11x+1031 | | 2x=3×86 | | 4k-2=28-6k | | 35+p=58 | | 7/x=42/24 | | 3^x+3=16x | | 80=2z | | -3.25x+22.41x=-4.2 | | 2w=45-7w | | 5^(x-1)=85 | | 3(4×-1)=7(2x-5) | | |5x+3|=|3x-5| | | 1+6b+8b=1 | | 8=(4+b)^3 | | 14-2q=2+2q | | K=5(d— | | (3y-6)/(4)=-(5)/(6) | | 27+x=-53 | | -1/2b-8=-3/4b+7 | | -29(x-9)-(x+13)=-16 | | 81x^2-2=47 | | 32x+7=6x+4−3 | | 3l=l=72 | | 14-2q=6+2q | | 6a-2a(4a-5)=40 | | Y=200/3-x/3 | | (x)/(12)=(3)/(16) | | -1/2b-8=3/4b+7 | | 4^3x+1=71 | | 12x-1+10x+13=180 |