150/x=0,5x

Simple and best practice solution for 150/x=0,5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 150/x=0,5x equation:



150/x=0.5x
We move all terms to the left:
150/x-(0.5x)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
150/x-(+0.5x)=0
We get rid of parentheses
150/x-0.5x=0
We multiply all the terms by the denominator
-(0.5x)*x+150=0
We add all the numbers together, and all the variables
-(+0.5x)*x+150=0
We multiply parentheses
-0x^2+150=0
We add all the numbers together, and all the variables
-1x^2+150=0
a = -1; b = 0; c = +150;
Δ = b2-4ac
Δ = 02-4·(-1)·150
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*-1}=\frac{0-10\sqrt{6}}{-2} =-\frac{10\sqrt{6}}{-2} =-\frac{5\sqrt{6}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*-1}=\frac{0+10\sqrt{6}}{-2} =\frac{10\sqrt{6}}{-2} =\frac{5\sqrt{6}}{-1} $

See similar equations:

| 8m-5-2m+1=2 | | -2(-4m-6.4)=4.48 | | 2(0.9x=0.32 | | 31/3z*10=100 | | h−117=7 | | p/7.4=8.3 | | x+(x+6)=3 | | dV/dP=-V/P2 | | t+–16.49=–0.89 | | 943=u+760 | | 10x-20+7x+4=189 | | 10x+4/2=68 | | 10(q+4)=70 | | 16c=528 | | 4=q−665 | | X=4,2x+2 | | 5+6j=59 | | n=6(3n+5n) | | n=63n+5n | | 59=17x-20 | | x+2x+8=2x+4 | | X+12=5(3x+18)/3 | | 2,4x=4,8 | | 12.50+22.50s=325 | | -4+9+x=12 | | 12.50h+22.50=325 | | -64+x^2=0 | | 14n=11n | | -3x*x+243=0 | | q−37=598 | | 3.5v+7=v=3 | | 214=6n |

Equations solver categories