15-1/5x=1/6x-1

Simple and best practice solution for 15-1/5x=1/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15-1/5x=1/6x-1 equation:



15-1/5x=1/6x-1
We move all terms to the left:
15-1/5x-(1/6x-1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
-1/5x-1/6x+1+15=0
We calculate fractions
(-6x)/30x^2+(-5x)/30x^2+1+15=0
We add all the numbers together, and all the variables
(-6x)/30x^2+(-5x)/30x^2+16=0
We multiply all the terms by the denominator
(-6x)+(-5x)+16*30x^2=0
Wy multiply elements
480x^2+(-6x)+(-5x)=0
We get rid of parentheses
480x^2-6x-5x=0
We add all the numbers together, and all the variables
480x^2-11x=0
a = 480; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·480·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*480}=\frac{0}{960} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*480}=\frac{22}{960} =11/480 $

See similar equations:

| -2(-9v+3)-v=3(v-4)-4 | | 55x+9-30x=46 | | 8m+8(7m+5)=-472 | | 4(-4k+3)=8k-6(k+4) | | 11+x/2=47 | | 0.7x-6=0.2x | | 12m^2-5m-24=0 | | F(x)=5(-3) | | X^2+3y+90=180 | | 5(-1+3b)=5(7+4b) | | 5(-1+3b)=5(7+4b | | 12=-9x | | x+0.75x+0.25x=1 | | 8x+3.6=68.4 | | 41=−2x^2+20x | | 9x2+12x–24=0 | | -35+6n=-7+4(6n-7) | | -49=-7n-6(8n-1 | | 0.08(y-8)+0.06y=0.18-0.7 | | 35x+15=24 | | 1=0.2x-0.9-13 | | 3x-(5x-1)=2(x-5)-1 | | 39k=27 | | 10(p-3)+3p+9=-32 | | 7n=67 | | 5=-16t^2+15t+4 | | 1/4=7/2h | | 5-3/2x=32 | | 3a+8(1-2a)=-34-6a | | 9x-30=7x+10 | | 2w+29(w+41/4)=1361/2 | | 4x+3x-5=23 |

Equations solver categories