15-1/5n=1/6n-1

Simple and best practice solution for 15-1/5n=1/6n-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15-1/5n=1/6n-1 equation:



15-1/5n=1/6n-1
We move all terms to the left:
15-1/5n-(1/6n-1)=0
Domain of the equation: 5n!=0
n!=0/5
n!=0
n∈R
Domain of the equation: 6n-1)!=0
n∈R
We get rid of parentheses
-1/5n-1/6n+1+15=0
We calculate fractions
(-6n)/30n^2+(-5n)/30n^2+1+15=0
We add all the numbers together, and all the variables
(-6n)/30n^2+(-5n)/30n^2+16=0
We multiply all the terms by the denominator
(-6n)+(-5n)+16*30n^2=0
Wy multiply elements
480n^2+(-6n)+(-5n)=0
We get rid of parentheses
480n^2-6n-5n=0
We add all the numbers together, and all the variables
480n^2-11n=0
a = 480; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·480·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*480}=\frac{0}{960} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*480}=\frac{22}{960} =11/480 $

See similar equations:

| -7+x-3=10 | | 57=-4+n | | 366/6=427/x | | 4(n+5)=6(-n+7) | | 366/6=427/x. | | 3/4=15-3w/12 | | b-5=73 | | 4b+4.50-15=32.50 | | 1.4x-2.7=11 | | 2m+20=m+60 | | 4u–20=12 | | 13=-11+x | | 0.8-0.9y=5 | | 2(2x-1)+x=8x+2-3x | | (D^2+13D+12)y=0 | | 2x+7(10-x)=35 | | 40+13r=-r^2 | | 7x=135-8x | | 0.8-0.9x=5 | | 8e+2=72+e | | 5p+2=4p-` | | w/5+7=4 | | 4(x+3)=8x+2-2x | | 2x+0.5x=20 | | x+59x+51=180 | | -2y-60=y-30 | | 5x*15=5(x+3) | | 4x^2+24x+81=0 | | 22-2x=4x-14 | | -9x+5=1 | | -5=-3+n/6 | | 5x+60=3+180 |

Equations solver categories