15+26x=4x(8x-2)+19

Simple and best practice solution for 15+26x=4x(8x-2)+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15+26x=4x(8x-2)+19 equation:



15+26x=4x(8x-2)+19
We move all terms to the left:
15+26x-(4x(8x-2)+19)=0
We calculate terms in parentheses: -(4x(8x-2)+19), so:
4x(8x-2)+19
We multiply parentheses
32x^2-8x+19
Back to the equation:
-(32x^2-8x+19)
We get rid of parentheses
-32x^2+26x+8x-19+15=0
We add all the numbers together, and all the variables
-32x^2+34x-4=0
a = -32; b = 34; c = -4;
Δ = b2-4ac
Δ = 342-4·(-32)·(-4)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{161}}{2*-32}=\frac{-34-2\sqrt{161}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{161}}{2*-32}=\frac{-34+2\sqrt{161}}{-64} $

See similar equations:

| 2x+1200-3x=1020 | | 20(4x-1)^4=0 | | d/2+ 5=6 | | 19x+23=180 | | 70+55x=180+45x | | 42ªx=0,25 | | P+4q=180 | | -11y-4=-8y | | 4x+12=-3x-6+4 | | 6-x/2=-4 | | 3(x+15)+2(x+10)=20 | | x+56=101 | | a/164363–10=10 | | 160+4x=-35x-35 | | 17p-14p=15 | | 2x-5+1x=13+2 | | -3(x+5)-3=-15 | | 1x-10=180 | | (9a-2)/7=10 | | 5(x+5)+5=55 | | 5u-4u=12 | | 5x+142=4x+77 | | 4n-12=5n+15 | | 2x+1020-3x=1020 | | 3w-12=2(5w+1) | | (7m-2)/3=11 | | -2(x+5)=4x+12 | | 14=8x+12x | | -2(x+2)=-4 | | (8x+10)=(6x+20) | | 14-8x=12x | | x/6=11/13 |

Equations solver categories