15+2/9m=8+m

Simple and best practice solution for 15+2/9m=8+m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15+2/9m=8+m equation:



15+2/9m=8+m
We move all terms to the left:
15+2/9m-(8+m)=0
Domain of the equation: 9m!=0
m!=0/9
m!=0
m∈R
We add all the numbers together, and all the variables
2/9m-(m+8)+15=0
We get rid of parentheses
2/9m-m-8+15=0
We multiply all the terms by the denominator
-m*9m-8*9m+15*9m+2=0
Wy multiply elements
-9m^2-72m+135m+2=0
We add all the numbers together, and all the variables
-9m^2+63m+2=0
a = -9; b = 63; c = +2;
Δ = b2-4ac
Δ = 632-4·(-9)·2
Δ = 4041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4041}=\sqrt{9*449}=\sqrt{9}*\sqrt{449}=3\sqrt{449}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{449}}{2*-9}=\frac{-63-3\sqrt{449}}{-18} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{449}}{2*-9}=\frac{-63+3\sqrt{449}}{-18} $

See similar equations:

| 20k+11°=8k+1° | | -3.5=t/3 | | 8x+1+21-2x=180 | | 5x-8=44-2 | | 55=4^x-9 | | 273=m(13) | | r+2.6=16.9 | | 4n+5=6n+6 | | 18q=396 | | -3(2-3x)=5x-2(x-6) | | 15+2y=8 | | 2x+42=5.5x | | d-693=-336 | | 3f(-)12=-3 | | 3(s+4)=12 | | 225=q-256 | | -4=2t(-)2 | | (4x+9)+(5x+6)=180 | | (4x+9)+(5x+6)=90 | | 3x=4(x+6) | | 65+x(30)=305 | | -6p=972 | | X^2-3x=182 | | 9-4x=2x-9 | | -5q=480 | | 5x+17=37x+5-23x-5 | | 3x+6+2x+10=90 | | -29=w/16 | | 3(4x-56)+2=-4(4-3x) | | -(2x-5)-(2x-6)+3=-6(x-1)-(2x+7)+3 | | 3x+6+2x+10=180 | | p+-101=-557 |

Equations solver categories