If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15(x2-8)=8(x2+15)
We move all terms to the left:
15(x2-8)-(8(x2+15))=0
We add all the numbers together, and all the variables
15(+x^2-8)-(8(+x^2+15))=0
We multiply parentheses
15x^2-(8(+x^2+15))-120=0
We calculate terms in parentheses: -(8(+x^2+15)), so:We get rid of parentheses
8(+x^2+15)
We multiply parentheses
8x^2+120
Back to the equation:
-(8x^2+120)
15x^2-8x^2-120-120=0
We add all the numbers together, and all the variables
7x^2-240=0
a = 7; b = 0; c = -240;
Δ = b2-4ac
Δ = 02-4·7·(-240)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{105}}{2*7}=\frac{0-8\sqrt{105}}{14} =-\frac{8\sqrt{105}}{14} =-\frac{4\sqrt{105}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{105}}{2*7}=\frac{0+8\sqrt{105}}{14} =\frac{8\sqrt{105}}{14} =\frac{4\sqrt{105}}{7} $
| 4m+14=2m+4 | | 15=1/2+1.66x+10 | | −2x+4=−3x+9 | | X+5=1/3×6x | | z+24=105 | | -x-4(x+7)=-2(x+3)-1 | | 5d=3d-8/5 | | -4(x-8)=-15 | | 15y=0 | | 2–x=5x+1 | | 14,040x-50=12,500+20 | | 6x+2=74 | | −7x+28=−3x+40 | | 3/5g-1/3=(-10/3) | | x-(1-2x)+x-3-(-4)=0 | | 5x-8=-2x+20 | | 3x+1+6=-9 | | 19x-2(4x-6)=16+11x | | 0=-16t^2+52t+640 | | 18-3x-x=-6 | | 0=-16t^2+640 | | 2x-6=(-10) | | 0=-16t+640 | | -155=-4m+5 | | 0.10(y-3)+0.14=0.04y-2.1 | | 2x+6(x+1)=3(x+8)+7 | | 6.2a=0.0124,a= | | 7+5(p-3)=32 | | F3=2n,90 | | -1/3(5x+12)=4-3(x+3) | | n^2+21n-6930=0 | | -19+6x=-19+6x |