If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-8x=0
a = 14; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·14·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*14}=\frac{0}{28} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*14}=\frac{16}{28} =4/7 $
| y^{3}=27 | | n+35=71 | | 5x+10=4x+18+44 | | y+63=303 | | -7+6p-7p=-6 | | -7x+3x=4 | | 12G=12(3/2g-1)+2 | | 10/15=n/27 | | 5/6y+1=-13y+19 | | 16v-8v=40 | | j+16=99 | | t-15=75 | | 6x+4=11+4x | | 13=8+v/31.25 | | -13=-5n-2+4 | | 3x/4-11x/20+4x/5-3/4=17/20 | | -7x+x=12 | | y−27=51 | | 7/x+1=21 | | -6m+3m=6 | | d+11=47 | | 2x×4-5=3x+3 | | 19u+u+6=–14 | | –8+7j=10+5j | | 3x+7=133x+7=133 | | k+3=-21 | | -21=6x=x | | 91=p+3 | | 66=3(x+4)+5(x-2) | | -5=7-5r+8r | | 9=g−11 | | 3y-19=76 |