If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-7x=0
a = 14; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·14·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*14}=\frac{0}{28} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*14}=\frac{14}{28} =1/2 $
| -5x+9=-86 | | -25+17=x | | 5(x+8)-2(x-13=99 | | 2y+15y=54 | | 10x=184 | | -3x-151=6x+155 | | 3x+7+x-2+3x=50+4x+3-x | | -5g-9=9-7g | | 3p(p+4)=0 | | O,5x-1=21 | | (x+9)^2=-64 | | 13x-10=133 | | M(m-1)=0 | | 133+13x-10=180 | | 4(5y-1=3(6y+7) | | 3+x/2x-3=-1/2 | | 5n-2=353 | | (Q+3)(q+2)=0 | | -8+p=-2p+p+10 | | z16=68 | | 3x=x+83x=x+8 | | 28=4(x+20) | | (H+8)(h-2)=0 | | 4y+7-7=-10+5y | | 6r-10=2r+6 | | 63-6b+3b=48 | | 7x+10x+36=23x | | 6x=4x+86x=4x+8 | | 6x-4,5=13,5 | | 3+2n=7n-3 | | -3u+4=-5-4u | | x4x−4=11−x |