If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-4=-2x^2+60
We move all terms to the left:
14x^2-4-(-2x^2+60)=0
We get rid of parentheses
14x^2+2x^2-60-4=0
We add all the numbers together, and all the variables
16x^2-64=0
a = 16; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·16·(-64)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*16}=\frac{-64}{32} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*16}=\frac{64}{32} =2 $
| -3c=-4-c | | -(6m+8)=4(17–m) | | 10+2/3=r+12+1/6 | | z-33=-19 | | 180=x+x+4x | | (10+2/3)=r+(12+1/6) | | −7.7n=8-9.7n | | .1(x+4)-2+2.4x=-5 | | -12a-8a-(-5)=-15 | | 35+40x=95 | | 1.875=1/2^x | | 2k÷2=6÷2 | | x+4*3=36 | | 10^7x=10000 | | -7y-23=7y-75 | | 25^4x=125 | | e/3=2.8 | | b+24/5=8 | | w-11=44 | | b+245=8 | | (2x+1)/2+(4x-5)/3=-1 | | 6(-2-)=-(13x+2) | | -21=s+54 | | 32=16x-8 | | .180/x=0.8 | | 1/2x^2+(4x-5)=-1 | | (2x+3)(5x-8)=A | | 774+w=892 | | e+5.7=12 | | j+36=91 | | 5x-(-3)=7 | | 13x+2=360 |