If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+9x-3=0
a = 14; b = 9; c = -3;
Δ = b2-4ac
Δ = 92-4·14·(-3)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{249}}{2*14}=\frac{-9-\sqrt{249}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{249}}{2*14}=\frac{-9+\sqrt{249}}{28} $
| 2x-5(x-4)=-5+4x-17 | | 10n+3-10+5n=38 | | (4/3)(x+3)=(3/2)x+2 | | t^2-5t+14=0 | | 2m-(2/49/7)=15 | | 17-3+-4+n=5n | | 3•y-1=140 | | (Y-4)(y+9)=0 | | -t/9-8=13 | | t^2-5t+14^=0 | | x+14=-56 | | 4(x+4)=6x+6 | | 8=4j-8 | | 3/5x+9.3=-4.2 | | -10m^2+16m-8=0 | | 2x+21/5=9 | | x^2+6x-504=0 | | 90-x=3/7 | | -1.5/x=21 | | 2(n+10)=26 | | -10m+16m-8=0 | | 48+-1+8x=18x+5 | | 1/2+x-5/8=23/8 | | 2y-10y+6=38 | | 25-3n+5=n+10 | | 4(2x-1)(x+4)=0 | | 12(1/3x)-4=12(3/4x)+1 | | 6m+3m=33 | | 30x=22x-80 | | 3x+7=11-2x | | 6+x+14=14 | | 100-(-8x)=12x |