If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+21x=0
a = 14; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·14·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*14}=\frac{-42}{28} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*14}=\frac{0}{28} =0 $
| 21+(2-x)+12x=44 | | -8(7+b)=24 | | 3x-6-6x=4-2x=3 | | 4^x=1,234,568 | | 5=5(y-2)-10 | | -7x+2x=-23 | | d-6=-52 | | 9x2=63 | | -215+x+-82.5+0.5x=x | | 9x+4=11+8x | | -2=10m+8 | | 4^x=1,234,567 | | -5(-6a+7)=7(a-5) | | 2(4x+2))=4x-12(x-1) | | -37-6m=7(1+5m)+3m | | (12)+(x+11)=(2x+23) | | 11x-(-6)=3x+26 | | 4r-6-4=22 | | 5n-8=212 | | 12/r^2-4-3/r-2=5/r+2 | | 1/1y+1/4=5/12 | | 5=n-13 | | 12/2+12/2=1x | | 24=5x+5x+6 | | 3.5-z/8.8=-4.7 | | 12/2+12/2=2x | | 3x^2-5x=22 | | -20-8n=-2(6n-4) | | 3*x+8=0 | | 7n+n=-16 | | 6t+15t-4=24t-60 | | 12/2+12/2=6x |