If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14=16x^2=43
We move all terms to the left:
14-(16x^2)=0
a = -16; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-16)·14
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*-16}=\frac{0-8\sqrt{14}}{-32} =-\frac{8\sqrt{14}}{-32} =-\frac{\sqrt{14}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*-16}=\frac{0+8\sqrt{14}}{-32} =\frac{8\sqrt{14}}{-32} =\frac{\sqrt{14}}{-4} $
| v+3/5=1/5+2/5 | | 4551=41p+1230 | | 5x-3x+3=3x+7 | | 14+6x =432 | | 6-6x=-5x | | 2+2x4=16 | | 8a−7=7+a | | k(k-1)+(k-1)=5k+k | | 6z+4-2z=16-2z | | (x/7)=-5 | | 3x+4=−11 | | 2/u=5 | | −4=1d−8 | | 16-4x=-12 | | 5-6x=-4 | | 140=14x-1 | | 2(5-8k)-13=9(1-‘k)-12 | | 6x+3=9x2 | | 12.44+14=6y-2 | | 1/6x-3+1/2x+1=8+x | | y=650000(1+.04)^5 | | 2x=x+4+3 | | 7(x-1)=-9(x+2)+39 | | -4+x=x+4 | | -2/4(10x-25)=8x+4 | | −8=−5x+2−38 | | 7(x-1=-9(x+2)+39 | | 3(4x=3)=2x-5(3-x)+2 | | 7x-5/3x-5=9 | | 3(4x+6)=9x=12 | | 15x3-10=0 | | 3x=(10-31/3) |