If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1440=(4x-1)(x+5)
We move all terms to the left:
1440-((4x-1)(x+5))=0
We multiply parentheses ..
-((+4x^2+20x-1x-5))+1440=0
We calculate terms in parentheses: -((+4x^2+20x-1x-5)), so:We get rid of parentheses
(+4x^2+20x-1x-5)
We get rid of parentheses
4x^2+20x-1x-5
We add all the numbers together, and all the variables
4x^2+19x-5
Back to the equation:
-(4x^2+19x-5)
-4x^2-19x+5+1440=0
We add all the numbers together, and all the variables
-4x^2-19x+1445=0
a = -4; b = -19; c = +1445;
Δ = b2-4ac
Δ = -192-4·(-4)·1445
Δ = 23481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23481}=\sqrt{9*2609}=\sqrt{9}*\sqrt{2609}=3\sqrt{2609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3\sqrt{2609}}{2*-4}=\frac{19-3\sqrt{2609}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3\sqrt{2609}}{2*-4}=\frac{19+3\sqrt{2609}}{-8} $
| 5x=9x+8 | | 5(x-1)=7(3+x) | | 4x+4=16x+95 | | 100-k=50 | | 60/x+5=4x-1/24 | | 2(6x+6-5=103 | | -3n+6n=4n-8 | | 4^(x-5)=16^(2x-2) | | 20t-1=17 | | 2^(2x-10)=256 | | 6(6t+6)-5=1+6t | | 4(2−b)=−12 | | 2x+27+x=90 | | 50/4=x/9 | | 2x+62=108 | | P=4s. | | 9p−18=27p=3;p=5;p=7p= | | 28-11x=34 | | n-(1/6)=(4/6) | | 52x-300/X^2=0 | | x+7.05=45.3= | | -6(1+5n)+9n=12(5-3n)+9n | | v+2/8=7/6 | | -13+n=-22 | | s^2-2s=24 | | (4+8x)/5x=0 | | 54=g−18 | | (2x+3)-(5x-2)/6x+11=2/17 | | v+2/8=11/6 | | q/6=28 | | 6x-10=4x-5=3x+5 | | 8n-8=7n-3 |