If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144-100b^2=0
a = -100; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-100)·144
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*-100}=\frac{-240}{-200} =1+1/5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*-100}=\frac{240}{-200} =-1+1/5 $
| -4=-2+n/10 | | 4x-2(3x+1)=-18 | | 7z+z=7z+1 | | c158=41.5 | | 2(-5.8+z)=14.2 | | l=10.5 | | 9=8/x+8 | | 9x+39=15 | | 6=2+2y | | 4y×2+7y+2=0 | | x^2-x-3+x^2+2x+2=2(2x^2-46) | | 4+r=9r | | 3/5x-9/10x=1 | | -n+5=n-13 | | a1.23=3.6 | | 7+2x=2(x−1)+47+2x=2(x-1)+4 | | -7+x/2=11 | | x+5=−7 | | 2(3m+2m+2)=4+2 | | 1.4f=4.2 | | 36=8x+x^2 | | 7x-3(x-6)=-6 | | d5=66 | | 78=k12 | | 8x+3(-5x+2)=-1 | | 5(8^x)=325 | | -3/10x=1 | | X^2+15x=-55 | | 6m-12=7m-4 | | 5x+2(-2x-1)=-31 | | X/2=3x+8/4 | | b12=37 |