If it's not what You are looking for type in the equation solver your own equation and let us solve it.
143=x2-1
We move all terms to the left:
143-(x2-1)=0
We add all the numbers together, and all the variables
-(+x^2-1)+143=0
We get rid of parentheses
-x^2+1+143=0
We add all the numbers together, and all the variables
-1x^2+144=0
a = -1; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-1)·144
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-1}=\frac{-24}{-2} =+12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-1}=\frac{24}{-2} =-12 $
| z+37+102+z+27=180 | | -3/4j=12 | | (15x+2)+(10x+4)=180 | | 0.8-2.6x+1.08=5.28 | | x4+9x2+8=0 | | 2n^2+16n-8=-8 | | 3x-4+x+6=18 | | 4=s/2+3 | | 17s=68 | | 10=z/9+3 | | (10x+4)+(15x+2)=180 | | 4h+-2=-14 | | -5g+2.3=−18.8 | | 7a–13=8+4a | | 7m-10-4m+3=44 | | z/9+3=10 | | 36+14a+10a=180 | | -2=n-2/2 | | f=8+–16 | | 3t+60+3t=180 | | t/6+3=7 | | x=12+34 | | 8u+30+2u=180 | | 5n+4+2n-8=8 | | 10=5(x | | y/2+7=14 | | (10x+4)+28+(15x+2)=180 | | 2(-4m-5)-(6m+11=33 | | 19t+110+16t=180 | | 2x-16=29-3x | | ?x3=49 | | 6b^2+2b-19=-4 |