If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1400=10z^2+2
We move all terms to the left:
1400-(10z^2+2)=0
We get rid of parentheses
-10z^2-2+1400=0
We add all the numbers together, and all the variables
-10z^2+1398=0
a = -10; b = 0; c = +1398;
Δ = b2-4ac
Δ = 02-4·(-10)·1398
Δ = 55920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{55920}=\sqrt{16*3495}=\sqrt{16}*\sqrt{3495}=4\sqrt{3495}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3495}}{2*-10}=\frac{0-4\sqrt{3495}}{-20} =-\frac{4\sqrt{3495}}{-20} =-\frac{\sqrt{3495}}{-5} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3495}}{2*-10}=\frac{0+4\sqrt{3495}}{-20} =\frac{4\sqrt{3495}}{-20} =\frac{\sqrt{3495}}{-5} $
| 12-10=j | | 6•(z-2)=(z+4)•3 | | 10-8=n | | 2/5(x-16)=6 | | 3y=1,5 | | 7=29-4x | | (5n-3n)+2n=4 | | 4x+6=9x-8 | | -4x+6=9×-8 | | 5r+5(r+2.2)=33 | | 7x-9=3×-29 | | Y=52xx30 | | 5x-2+x=9+3x+105x−2+x=9+3x+10 | | O.8b=1.12 | | 3=4a-7 | | 1/2.x=1/2 | | 7x=-8x-2 | | 6/2/3=n-101/9 | | 3/10x+2/5=2 | | 7x╬2=-8x-2 | | 12x-16=67 | | -x/8=-46 | | 7y+4y=7-5y+54 | | 9x+17=-58 | | U+4y=7-5y+54 | | 8/a=-6/2 | | 9n+13.50=36 | | 3(2x+8)=-34+52 | | 13.50+9n=36 | | 10w-12=56 | | 20k+100=10k | | -0.25x+12=10 |